Transitions from Near-Surface to Interior Redox upon Lithiation in Conversion Electrode Materials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transitions from near-surface to interior redox upon lithiation in conversion electrode materials.

Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni(2+) → Ni(0)) sites sat...

متن کامل

Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials

Research on redox-flow batteries (RFBs) is currently experiencing a significant upturn, stimulated by the growing need to store increasing quantities of sustainably generated electrical energy. RFBs are promising candidates for the creation of smart grids, particularly when combined with photovoltaics and wind farms. To achieve the goal of "green", safe, and cost-efficient energy storage, resea...

متن کامل

Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries

The rapidly increasing demand for efficient energy storage systems in the last two decades has stimulated enormous efforts to the development of high-capacity, high-power, durable lithium ion batteries. Inherent to the high-capacity electrode materials is material degradation and failure due to the large volumetric changes during the electrochemical cycling, causing fast capacity decay and low ...

متن کامل

Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation.

LiFePO4 is a battery cathode material with high safety standards due to its unique electronic structure. We performed systematic experimental and theoretical studies based on soft X-ray emission, absorption, and hard X-ray Raman spectroscopy of LixFePO4 nanoparticles and single crystals. The results clearly show a non-rigid electron-state reconfiguration of both the occupied and unoccupied Fe-3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nano Letters

سال: 2015

ISSN: 1530-6984,1530-6992

DOI: 10.1021/nl5049884